Cyclic Sieving for Cyclic Codes
نویسندگان
چکیده
These are notes on a preliminary follow-up to a question of Jim Propp, about cyclic sieving of cyclic codes. We show that two of the Mahonian polynomials are cyclic sieving polynomials for certain Dual Hamming Codes: X and X inv for q = 2, 3 and q = 2, respectively.
منابع مشابه
Some notes on the characterization of two dimensional skew cyclic codes
A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code. It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$. In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...
متن کاملOn Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملCyclic Orbit Codes with the Normalizer of a Singer Subgroup
An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...
متن کاملThe Cyclic Sieving Phenomenon for Non-Crossing Forests
In this paper we prove that the set of non-crossing forests together with a cyclic group acting on it by rotation and a natural q-analogue of the formula for their number exhibits the cyclic sieving phenomenon, as conjectured by Alan Guo.
متن کامل